Recent Frequent Item Mining Algorithm in a Data Stream Based on Flexible Counter Windows

نویسندگان

  • Yanyang Guo
  • Gang Wang
  • Fengmei Hou
  • Qingling Mei
چکیده

In the paper the author introduces FCW_MRFI, which is a streaming data frequent item mining algorithm based on variable window. The FCW_MRFI algorithm can mine frequent item in any window of recent streaming data, whose given length is L. Meanwhile, it divides recent streaming data into several windows of variable length according to m, which is the number of the counter array. This algorithm can achieve smaller query error in recent windows, and can minimize the maximum query error in the whole recent streaming data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept Change Aware Dynamic Sliding Window Based Frequent Itemsets Mining Over Data Streams

Considering the continuity of a data stream, the accessed windows information of a data stream may not be useful as a concept change is effected on further data. In order to support frequent item mining over data stream, the interesting recent concept change of a data stream needs to be identified flexibly. Based on this, an algorithm can be able to identify the range of the further window. A m...

متن کامل

Mining frequent items in a stream using flexible windows

We study the problem of finding frequent items in a continuous stream of itemsets. A new frequency measure is introduced, based on a flexible window length. For a given item, its current frequency in the stream is defined as the maximal frequency over all windows from any point in the past until the current state. We study the properties of the new measure, and propose an incremental algorithm ...

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Mining Maximum Frequent Item Sets Over Data Streams Using Transaction Sliding Window Techniques

As we know that the online mining of streaming data is one of the most important issues in data mining. In this paper, we proposed an efficient one.frequent item sets over a transaction-sensitive sliding window), to mine the set of all frequent item sets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorit...

متن کامل

Mining frequent itemsets over data streams using efficient window sliding techniques

Online mining of frequent itemsets over a stream sliding window is one of the most important problems in stream data mining with broad applications. It is also a difficult issue since the streaming data possess some challenging characteristics, such as unknown or unbound size, possibly a very fast arrival rate, inability to backtrack over previously arrived transactions, and a lack of system co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014